精品关于锂离子电池隔膜最全面的一篇简介
精品
|
关于锂离子电池隔膜最全面的一篇简介
2019/7/25
导读:隔膜是锂离子电池的重要组成部分,是用于隔开正负极极片的微孔膜,是具有纳米级微孔结构的高分子功能材料。其主要功能是防止两极接触而发生短路同时使电解质离子通过。其性能决定着电池的界面结构、内阻等,直接影响着电池的容量、循环以及电池的安全性能。
1.1
原料及制造工艺对隔离膜性能的影响
1.1.1
隔离膜定义与功能
隔膜是锂离子电池的重要组成部分,是用于隔开正负极极片的微孔膜,是具有纳米级微孔结构的高分子功能材料。其主要功能是防止两极接触而发生短路同时使电解质离子通过。其性能决定着电池的界面结构、内阻等,直接影响着电池的容量、循环以及电池的安全性能。
1.1.2
隔离膜的原材料
目前,商品化的锂离子电池隔膜产品多为聚烯烃材料制备的微孔膜,主要原料为高分子量的聚乙烯和聚丙烯,产品包括聚乙烯PE单层膜、聚丙烯PP单层膜以及由PP和PE复合的PP/PE/PP多层微孔膜。聚烯烃材料具有强度高、耐酸碱腐蚀性好、防水、耐化学试剂、生物相容性好、无毒性等优点,其工业制备较成熟。处于研究阶段或者还没有大规模应用的锂离子电池隔膜还有PET/纤维素无纺布、聚偏二氟乙烯(PVDF)多孔膜、聚酰亚胺(PI)电纺丝多孔膜,以及各种PE,PVDF,PP,PI改性膜等。
PE膜对HDPE原材料的要求:
1)优良的溶混性,HDPE溶解性良好,熔融温度大于135℃,密度95%-99%,保证能与有机烷烃共溶,形成均匀溶液,是隔膜一致性的保证。
2)适当的分子量和分子量分布,分子量大于30万,分布较窄,PDI=Mw/Mn=6-8,保证隔膜成型加工性能和力学性能。
3)低凝胶和杂质含量,DSC曲线中只有一个主降解峰,原料成分单一,无机杂质低,保证隔膜的品质。
4)增塑剂与萃取剂,液体石蜡(C16-C20正构烷烃)做为增塑剂,二氯甲烷做为萃取剂,成孔均匀性的保证。
PP膜对PP原材料的要求:
5)具有较高等规指数,规成份须大于95%,熔融温度大于163℃,保证良好的结晶和成孔
6)适当的分子量和分子量分布,分子量大于40万,分布较,PDI=Mw/Mn=6-8,保证隔膜成型加工性能和力学性能
7)低凝胶和杂质含量,DSC曲线中只有一个主降解峰,原料成分单一,无机杂质低,保证隔膜的品质。
8)β晶型改进剂,干法双向拉伸工艺还需要加入β晶型改进剂,混合均匀是双向拉伸成孔均匀性的重要因素。
1.1.3
隔离膜的工艺制程
锂离子电池隔膜的材料主要为多孔性聚烯烃,其制备方法主要有湿法和干法两种,湿法也称之为相分离法或热致相分离( TIPS) ; 干法,即拉伸致孔法, 又叫熔融拉伸(MSCS)。两者目的均在于提高隔膜的孔隙率和强度等性能。隔膜的分类及工艺,特性见下简表。另外,PET/纤维素无纺布的使用无纺布技术制程,聚偏二氟乙烯(PVDF)多孔膜也使用相分离方法、聚酰亚胺(PI)及聚酰胺(PAI)使用电纺丝及流延相分离制程。
1.1.3.1
干法隔膜的工艺生产流程
干法是将聚烯烃树脂熔融、挤压、吹制成结晶性高分子薄膜, 经过结晶化热处理、退火后得到高度取向的多层结构, 在高温下进一步拉伸, 将结晶界面进行剥离,形成多孔结构,可以增加隔膜的孔径。多孔结构与聚合物的结晶性、取向性有关。干法的关键技术在于聚合物熔融挤出铸片时要在聚合物的粘流态下拉伸300 倍左右以形成硬弹性体材料。多层PP,PE复合膜的工艺流程如下: ①将PE、PP 分别于熔融挤出, 拉伸300 倍左右流延铸片成12μm 的膜; ②将PE、PP 膜进行热复合、热处理、纵向拉伸、热定型。干法隔膜的工艺流程如下图:
熔融挤出
/
拉伸
/
热定型法(单轴拉伸法)
熔融挤出/拉伸/热定型法的制备原理是聚合物熔体在高应力场下结晶,形成具有垂直于挤出方向而又平行排列的片晶结构,然后经过热处理得到弹性材料。具有硬弹性的聚合物膜拉伸后片晶之间分离,并出现大量微纤,由此而形成大量的微孔结构, 再经过热定型即制得微孔膜。有关专利介绍了聚烯烃微孔膜的这种制备工艺,拉伸温度高于聚合物的玻璃化温度而低于聚合物的结晶温度,如吹塑挤压成型的聚丙烯薄膜经热处理得到硬弹性薄膜,先冷拉6%~30% ,然后在120~150℃之间热拉伸80%~150% ,再经过热定型即制得稳定性较高的微孔膜。熔融挤出/拉伸/热定型法的工艺较简单且无污染,是锂离子电池隔膜制备的常用方法, 但是该法存在孔径及孔隙较难控制等缺点。
单轴拉伸干法工艺的制备的PP及PP/PE/PP隔膜,其孔呈细长形,长约0.1~0.5μm ,宽约0.01~0.05μm,孔结构为直通孔,制得膜的孔径范围为0.1~3μm,膜的裂缝孔径最长为0. 4μm ,最宽0.04μm。单轴拉伸干法膜由于TD方向上并没有拉伸,致其TD方向上的强度较差,只有10MPa左右的强度(湿法膜的1/10左右),TD方向上容易撕裂,但也正是由于TD方向没有拉伸,其TD方向几乎没有热收缩。另外,PP聚丙稀延展性较差,表面能低,属于难粘塑料,不利于与正、负极片的粘接,隔膜与电极界面结合不紧密,影响电池的性能。
添加成核剂共挤出
/
拉伸
/
热固定法(双轴拉伸法)
添加成核剂共挤出制成含固体添加物的膜,固体添加物以亚微米级粒径均匀分布在聚合物相中,由于拉伸时应力集中出现相分离而形成微孔膜,聚丙烯微孔膜的制法,双轴拉伸含大量β晶型的聚丙烯膜, 然后热固定即得, 其孔径为0.02~0.08μm ,孔隙率为30 %~40 % ,膜在所有方向的强度一致,约60~70 MPa。由于β晶型的聚丙烯形态是由捆束状生长的片晶组成,球晶的致密度较低,因此晶片束之间的非晶区很容易被拉开而形成微银纹或微孔。添加成核剂后,由于结晶结构变得松散,拉伸时很容易成孔,无污染。此方法最早由中科院开发,国内由新乡格瑞恩,及新时科技用此法生产双轴拉伸的单层PP隔膜。
双轴拉伸干法工艺的制备的PP膜,由于是MD与TD方向都有拉伸,其TD方向的强度比单向拉伸的干法工艺要大6倍左右,故其TD方向不会容易撕裂。孔结构与湿法类似,属于树枝状的非直孔。由于其需要加固体成核剂,成核剂在PP熔体中的分散程度直接影响其成孔的均匀性,但是固体的熔体中的分散程度的较难控制的,所以成孔的均匀性是双轴干法拉伸最大的缺点。
1.1.3.2
湿法隔膜的工艺生产流程
热致相分离法是近年来发展起来的一种制备微孔膜的方法,它是利用高聚物与某些高沸点的小分子化合物在较高温度(一般高于聚合物的熔化温度Tm)时, 形成均相溶液, 降低温度又发生固- 液或液- 液相分离, 这样在高聚合物相中, 拉伸后除去低分子物则可制成互相贯通的微孔膜材料。湿法的挤出铸片是利用热致相分离,湿法是将液态的烃或一些小分子物质与聚烯烃树脂混合,加热熔融后,形成均匀的混合物,挥发溶剂,进行相分离,再压制得到膜片;将膜片加热至接近结晶熔点,保温一定时间,用易挥发物质洗脱残留的溶剂,加入无机增塑剂粉末使之形成薄膜,进一步用溶剂洗脱无机增塑剂,最后将其挤压成片。如PE、PP等聚合物和石蜡、DOP等高沸点的小分子化合物在升高温度(高于PE等聚合物的熔点)下形成均相溶液,降低温度时又发生相分离,经过双向拉伸后,用溶剂洗脱掉石蜡等小分子化合物即可成为微孔材料。
其工艺流程为如....
该文章只显示3分之一,如想阅读到这篇文章的完整内容,请扫描下方二维码,打开我们的万水化工商城小程序,在首页“知识中心”栏目搜索文章标题继续进行阅读。万水化工商城收集100万+篇精细化工知识文章,旨在为您深入的了解行业知识和化工应用技巧。